Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
JACS Au ; 2(5): 1105-1114, 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1895570

ABSTRACT

Dynamic covalent exchange cascades with cellular thiols are of interest to deliver substrates to the cytosol and to inhibit the entry of viruses. The best transporters and inhibitors known today are cyclic cascade exchangers (CAXs), producing a new exchanger with every exchange, mostly cyclic oligochalcogenides, particularly disulfides. The objective of this study was to expand the dynamic covalent chalcogen exchange cascades in thiol-mediated uptake by inserting pnictogen relays. A family of pnictogen-expanded cyclic disulfides covering As(III), Sb(III), and Bi(III) is introduced. Their ability to inhibit thiol-mediated cytosolic delivery is explored with fluorescently labeled CAXs as transporters. The promise of inhibiting viral entry is assessed with SARS-CoV-2 lentiviral vectors. Oxygen-bridged seven-membered 1,3,2-dithiabismepane rings are identified as privileged scaffolds. The same holds for six-membered 1,3,2-dithiarsinane rings made from asparagusic acid and para-aminophenylarsine oxide, which are inactive or toxic when used alone. These chemically complementary Bi(III) and As(III) cascade exchangers inhibit both thiol-mediated cytosolic delivery and SARS-CoV-2 lentivector uptake at concentrations of 10 µM or lower. Crystal structures, computational models, and exchange kinetics support that lentivector entry inhibition of the contracted dithiarsinane and the expanded dithiabismepane rings coincides with exchange cascades that occur without the release of the pnictogen relay and benefit from noncovalent pnictogen bonds. The identified leads open perspectives regarding drug delivery as well as unorthodox approaches toward dynamic covalent inhibition of cellular entry.

2.
JACS Au ; 2022.
Article in English | EuropePMC | ID: covidwho-1824149

ABSTRACT

Dynamic covalent exchange cascades with cellular thiols are of interest to deliver substrates to the cytosol and to inhibit the entry of viruses. The best transporters and inhibitors known today are cyclic cascade exchangers (CAXs), producing a new exchanger with every exchange, mostly cyclic oligochalcogenides, particularly disulfides. The objective of this study was to expand the dynamic covalent chalcogen exchange cascades in thiol-mediated uptake by inserting pnictogen relays. A family of pnictogen-expanded cyclic disulfides covering As(III), Sb(III), and Bi(III) is introduced. Their ability to inhibit thiol-mediated cytosolic delivery is explored with fluorescently labeled CAXs as transporters. The promise of inhibiting viral entry is assessed with SARS-CoV-2 lentiviral vectors. Oxygen-bridged seven-membered 1,3,2-dithiabismepane rings are identified as privileged scaffolds. The same holds for six-membered 1,3,2-dithiarsinane rings made from asparagusic acid and para-aminophenylarsine oxide, which are inactive or toxic when used alone. These chemically complementary Bi(III) and As(III) cascade exchangers inhibit both thiol-mediated cytosolic delivery and SARS-CoV-2 lentivector uptake at concentrations of 10 μM or lower. Crystal structures, computational models, and exchange kinetics support that lentivector entry inhibition of the contracted dithiarsinane and the expanded dithiabismepane rings coincides with exchange cascades that occur without the release of the pnictogen relay and benefit from noncovalent pnictogen bonds. The identified leads open perspectives regarding drug delivery as well as unorthodox approaches toward dynamic covalent inhibition of cellular entry.

3.
Ann Intensive Care ; 12(1): 24, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1741957

ABSTRACT

BACKGROUND: The clinical impact and outcomes of ventilator-associated pneumonia (VAP) have been scarcely investigated in patients with the acute respiratory distress syndrome (ARDS). METHODS: Patients admitted over an 18-month period in two intensive care units (ICU) of a university-affiliated hospital and meeting the Berlin criteria for ARDS were retrospectively included. The association between VAP and the probability of death at day 90 (primary endpoint) was appraised through a Cox proportional hazards model handling VAP as a delay entry variable. Secondary endpoints included (i) potential changes in the PaO2/FiO2 ratio and SOFA score values around VAP (linear mixed modelling), and (ii) mechanical ventilation (MV) duration, numbers of ventilator- and vasopressor-free days at day 28, and length of stay (LOS) in patients with and without VAP (median or absolute risk difference calculation). Subgroup analyses were performed in patients with COVID-19-related ARDS and those with ARDS from other causes. RESULTS: Among the 336 included patients (101 with COVID-19 and 235 with other ARDS), 176 (52.4%) experienced a first VAP. VAP induced a transient and moderate decline in the PaO2/FiO2 ratio without increase in SOFA score values. VAP was associated with less ventilator-free days (median difference and 95% CI, - 19 [- 20; - 13.5] days) and vasopressor-free days (- 5 [- 9; - 2] days) at day 28, and longer ICU (+ 13 [+ 9; + 15] days) and hospital (+ 11.5 [+ 7.5; + 17.5] days) LOS. These effects were observed in both subgroups. Overall day-90 mortality rates were 35.8% and 30.0% in patients with and without VAP, respectively (P = 0.30). In the whole cohort, VAP (adjusted HR 3.16, 95% CI 2.04-4.89, P < 0.0001), the SAPS-2 value at admission, chronic renal disease and an admission for cardiac arrest predicted death at day 90, while the COVID-19 status had no independent impact. When analysed separately, VAP predicted death in non-COVID-19 patients (aHR 3.43, 95% CI 2.11-5.58, P < 0.0001) but not in those with COVID-19 (aHR 1.19, 95% CI 0.32-4.49, P = 0.80). CONCLUSIONS: VAP is an independent predictor of 90-day mortality in ARDS patients. This condition exerts a limited impact on oxygenation but correlates with extended MV duration, vasoactive support, and LOS.

SELECTION OF CITATIONS
SEARCH DETAIL